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(57) ABS TRAC 'I 

The present invention relates to an Inductive Monitoring 
System (IMS), its software implementations, hardware 
embodiments and applications. Training data is received, 
typically nominal system data acquired from sensors in 
normally operating systems or from detailed system simu- 
lations. The training data is formed into vectors that are used 
to generate a knowledge database having clusters of nominal 
operating regions therein. IMS monitors a system's perfor- 
mance or health by comparing cluster parameters in the 
knowledge database with incoming sensor data from a 
monitored-system formed into vectors. Nominal perfor- 
mance is concluded when a monitored-system vector is 
determined to lie within a nominal operating region cluster 
or lies suficiently close to a such a cluster as determined by 
a threshold value and a distance metric. Some embodiments 
of IMS include cluster indexing and retrieval methods that 
increase the execution speed of IMS. 

14 Claims, 10 Drawing Sheets 



US 7.383. 238 B1 
Page 2 

U.S. PATENT DOCUMENTS 6.490. 527 B1 12/2002 Utt ................................ 702/9 
6.581. 058 B1 6/2003 Fayyad et a1 .................. 707/6 

6.336. 109 B2 1/2002 Howard ....................... 706/25 6.599. 250 B2 7/2003 Webb et a1 ................. 600/483 
6.393. 387 B1 5/2002 Adriaans et a1 ............... 703/27 6.602. 469 B1 8/2003 Maus et a1 ................. 422/68.1 
6.400. 996 B1 * 6/2002 Holfberg et a1 ............... 700/83 
6.446. 027 B1 9/2002 O'Keeffe et al ............ 702/183 * cited by examiner 



U.S. Patent Jun. 3,2008 Sheet 1 of 10 

System 

US 7,383,238 B1 

Monitored 
Data 

44 

r 

System 

Fig. 2 

- 24 

g47 Y 

T I  ,r 30 

70-34 r 7 4  

Inductive 
Learning 
Module 

r 76 

System 

Database Module 
- Cluster - Monitoring 

Fig. 4 80 ’ 

System 
Status 

,hi! 

82 



U.S. Patent Jun. 3,2008 Sheet 2 of 10 

(D 

c9 
r; 

N 

m 
od 

? 

0 
v) 

9 
Lo 
0 
Y 
7 

US 7,383,238 B1 



U.S. Patent Jun. 3,2008 Sheet 3 of 10 

Determine which cluster in the 
cluster database has parameters 

closest to the input vector. 

Read Data to 
Fill Input Vector 

' 

US 7,383,238 B1 

I 

Expand closest cluster 
to include input vector. 

1 

Fig. 7 



U.S. Patent Jun. 3,2008 Sheet 4 of 10 

y l  i 4  
End 

r - - - -  

Fill Input Vector 

I 
I 
I 

r134 I , I 
I 1  

Scale at least a subset of 

US 7,383,238 B1 

Form vector into cluster 
and insert into 

data base. 

w 122 ,- Determine which cluster in the 
cluster database has parameters 

closest to the input vector. 

L 

Expand closest cluster 
to include input vector. 

Fig. 8 



U.S. Patent 

Determine an ordering distance between the 
indexing reference point and each of the 

clusters . 

Jun. 3,2008 

,-162 

system vector. 

Sort the clusters in accordance with their 
associated ordering distances. - 

Sheet 5 of 10 

*r 164 

US 7,383,238 B1 

System may be 
operating improperly. 

146 
Determine the distance between 
the monitored-system vector and 

the closest cluster. 

Yes 
> a predetermined 

Fig. 9 

outside nominal 

Fig. 10 



U.S. Patent Jun. 3,2008 Sheet 6 of 10 

170 
Receive a vector, V. 

indexing reference point and the vector, V. 

US 7,383,238 B1 

174 I Select a cluster, Cc, that is close to the vector V. 

+ 
176 

Determine a distance, Cv, between the vector, V, 
and the cluster, Cc. 

4 
178 

Set i = I, to begin at first cluster, C1, on list. 

Done 

No 

,.-I86 Yes 

I Determine a distance Di, between the vector, V, 
and the cluster, Ci. 

190 
Adjust Cv to reflect the new distance, Cv = Ci. 

Fig. 11A 



U.S. Patent Jun. 3,2008 Sheet 7 of 10 

Receive data vectors having nominal and off- 
nominal data points. 

US 7,383,238 B1 

r 2 0 0  

N O  
Done 

<I94 
Point to next cluster: i=i+'i 

Compare data vectors against cluster database to 
provide a comparison result for each data vector. 

h 

x m 2  

Fig. 11B 

Supply the data vectors and their associated 
comparison result to a secondary learning 

a p p I ica t ion. 

d o 4  

Fig. 12 



U.S. Patent 

Generate a cluster database using anomalous data for a 
given failure. 

Jun. 3,2008 

r 220 

Sheet 8 of 10 

When off-nominal data is detected, compare the monitored- 
system vector to the to the diagnostic cluster database. 

21 0 
Receive a monitored-system vector . 

-r 224 

US 7,383,238 B1 

r 214 

Compare the monitored- 
system vector against the 

cluster database. 

Adjust the erroneous parameter such that the parameter wil! match 
any range specified for that parameter in any cluster. 

4 218 
Compare the adjusted monitored-system vector 

against the cluster database. 

Fig. 13 

Fig. 14 



U.S. Patent Jun. 3,2008 

Nominal data 
Off-Nominal data 

Vector(s) 
Inductive Learning Module 

Cluster generation module 
Generate indexed-cluster module 

Cluster Database 
System Monitoring Module 

Monitored system data 
Annotated diagnostic cluster database 

Cluster retrieve module 

Sheet 9 of 10 

< 294 
< 296 

< 286 
T 24 

302 

304 
< 26 
T 30 

~ 3 1 0  
f 28 

< 290 

US 7,383,238 B1 

255 256 262 
11-- - 1  /254 , - - - -  1- - - 

260 Memory 

Data Acquisition Process 
-- 

Training system data 
I Archived data 292 k-7 Sensor(s) 

Fig. 15 



Sheet 10 of 10 US 7,383,238 B1 U.S. Patent Jun. 3,2008 

PIT3 PIT3- 
PT6 PT6 POV-4 PCV-6 PIT3 

position position pressure pressure difference change 

Lox PUMP 

PT6 

change 

Fig. 16 

Fig. 17 



US 7,383,238 B1 
1 

INDUCTIVE MONITORING SYSTEM 
CONSTRUCTED FROM NOMINAL SYSTEM 

MONITORING 
DATA AND ITS USE IN REAL-TIME SYSTEM 

ORIGIN OF INVENTION 

The invention described herein was made by an employee 
of the United States Government and may be manufactured 
and used by or for the Government for governmental pur- 
poses without payment of any royalties thereon or therefor. 

BACKGROUND OF INVENTION 

1. Technical Field of the Invention 
This invention relates generally to the field of automated 

system monitoring and anomaly detection and, in particular, 
to methods of generating system monitoring knowledge 
bases from nominal system behavior, and to the use of these 
knowledge bases in monitoring system performance in real- 
time or near-real-time. 

2. Description of the Prior Art 
The modern information age provides great quantities of 

raw data concerning the performance of man-made engi- 
neered systems as well as data concerning the behavior of 
natural systems. Numerous information processing tech- 
niques have been employed to attempt to classify such data, 
look for anomalies, or otherwise assist humans to extract, 
understand andor respond to information contained in the 
data. Examples of such techniques include model based 
reasoning, machine learning, neural networks, data mining, 
support vector machines, various decision tree models 
including ID3 decision tree learner, among many others. 
However, these techniques typically have one or more 
drawbacks that render them unsuitable or disfavored for 
some applications. 

For example, model based reasoning and related tech- 
niques typically require a detailed engineering simulation of 
the system under study, often including expert knowledge of 
system behavior, detailed behavior of system components 
and subsystems, detailed knowledge of interaction among 
system components and failure mechanisms, among other 
knowledge. Such knowledge may not be available for all 
components and subsystems. Furthermore, even when a 
reasonably accurate system simulation is available, it often 
requires impractical amounts of computer resources. That is, 
the simulation may execute too slowly to provide informa- 
tion in real-time or near-real time so as to be unsuitable for 
many practical system monitoring applications. In addition, 
the computer resources may not be available in space- 
limited or weight-limited environments such as space 
vehicles. Thus, a need exists in the art for computationally 
rapid techniques to monitor the performance of a system and 
detect anomalous behavior without the need for excessive 
computer resources. 

Some classification or decision models require that the 
system be trained with data that includes data derived from 
both normally-functioning systems (nominal data) as well as 
data derived from anomalous system behavior (off-nominal 
data). In many practical applications, off-nominal data is 
unavailable for training, and even the nominal data available 
for training may not fully explore all of the system’s nominal 
operating regimes. Thus, a further need exists in the art for 
techniques to monitor a system’s performance that does not 
require off-nominal data for training. 

SUMMARY OF THE INVENTION 

Accordingly and advantageously, the present invention 
relates to an Inductive Monitoring System (IMS), its soft- 

2 
ware implementations and applications. IMS builds one or 
more system monitoring knowledge bases that are subse- 
quently used to monitor system performance. IMS analyzes 
nominal system data and forms classes or clusters of 
expected system sensor values. These clusters are used in 
building a system monitoring knowledge base. IMS system 
monitoring knowledge bases can be constructed entirely 
from several sets of nominal sensor data, either gathered 
directly from the sensors of the system to be monitored 
during actual operation, or gathered from system simula- 
tions, or both. Thus, among the advantages of IMS is that 
off-nominal data is not needed to train IMS. Further advan- 
tages of IMS include avoiding the complexity and expense 
of constructing a detailed system model that may require 
many hours of expert time to create andor significant 

IMS monitors a system by comparing incoming sensor 
data with the clusters in the knowledge base to determine a 
“distance” (defined according to a suitable metric) from the 
incoming sensor data to the nearest knowledge base cluster. 

2o If the incoming sensor data lies sufficiently close to a cluster 
of the knowledge base derived from nominal system per- 
formance, the system is deemed to be functioning normally 
since it is sufficiently close to previous normal behavior. 
“Sufficiently close” is determined by threshold parameters 

25 supplied by the user to take into account that training data 
will not generally span the entire space of normal system 
operation, and the sensor data from nominally operating 
systems is inherently subject to a level of “noise,” causing 
deviations in data received from sensors even for identi- 

An important function of IMS is to monitor system 
performance (or the “health” of the system) in order to detect 
off-nominal performance, and not necessarily to provide 
thorough system diagnostics. However, limited diagnostic 
information may be available with IMS and can provide 
useful diagnostic information in some circumstances. For 
example, the amount by which off-nominal data fails to meet 
the threshold criteria (that is, the “distance” from the nearest 
cluster) can provide information as to the severity of the 
anomalous performance. In addition, the particular cluster 
closest to the suspicious system data can also provide useful 
guidance as to the possible nature of the anomalous perfor- 
mance (andor exclude certain types of system malfunc- 
tions). 

Some embodiments of IMS include cluster indexing and 
retrieval methods that are shown to be advantageous for 
increasing the execution speed of IMS. Distances are deter- 
mined from the clusters of the knowledge database to one or 

5o more reference points. The clusters are sorted into a list 
according to these distance values, typically in ascending 
order of distance. When a set of input data arrives and is to 
be tested, such input data is arranged as an ordered set of 
numbers, or an input vector. The distance from the input 

55 vector to the reference point(s) is then computed. The search 
of clusters from the list can be limited to those clusters lying 
within a certain distance range from the input vector, thereby 
increasing the system monitoring speed. 

These and other advantages are achieved in accordance 
60 with various embodiments of the present invention as 

10 . 

15 computer resources to run. 

30 cally-operating systems. 

35 . 

40 

45 

described in detail below. 

BRIEF DESCRIPTION OF THE DRAWINGS 

6 5  To facilitate understanding, identical reference numerals 
have been used, where possible, to designate identical 
elements that are common to the figures. 
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The techniques of the present invention can readily be system monitoring knowledge bases can be generated from 
understood by considering the following detailed descrip- either actual sensor data gathered during system runs and 
tion in conjunction with the accompanying drawings, in typically stored as archival data, or from “pseudo-sensor 
which: data” generated by system simulations (if available), or a 

FIG. 1 depicts a high-level block diagram of a typical 5 combination of both actual and simulated sensor data. IMS 
embodiment of the inductive monitoring system. typically generates the monitoring knowledge bases from 

FIG. 2 depicts a diagram of a typical data vector used by “nominal” system runs or simulations, that is from runs or 
the inductive monitoring system of FIG. 1. simulations that exhibit normal performance without 

FIG. 3 depicts an exemplary data vector as used by the anomalous behavior. This is in contrast to many fault- 
inductive monitoring system of FIG. 1. i o  detection or system health monitoring procedures in which 

FIG. 4 depicts a diagram of a typical cluster of the cluster anomalous or “off-nominal” system behavior is required. 
database of FIG. 1. Another important objective of IMS is to provide tech- 

FIG. 5 depicts an exemplary cluster having a pair of data niques to automatically produce system monitoring knowl- 
vectors showing maximum and minimum values for the edge bases for systems that are either difficult to model 
parameters. 15 (simulate) or which require computer models that are too 

FIG. 6 depicts an example of a two-dimensional mini- complex for use in real-time or near-real-time monitoring. 
mum bounding rectangle for an exemplary cluster. IMS uses nominal data sets collected either directly from the 

FIG. 7 depicts a flowchart of an embodiment of a tech- system or from detailed simulations of the system to build a 
nique to generate a cluster database by the inductive learning knowledge base that can then be used to detect anomalous 
module of FIG. 1. 20 behavior in the svstem. IMS “learns” tvnical svstem behav- 

FIG. 8 depicts a flowchart of an embodiment of another 
technique to generate a cluster database which scales or 
normalizes at least a subset of the input parameter values of 
the input vector of the inductive learning module of FIG. 1. 

FIG. 9 depicts a flowchart of an embodiment of a tech- 
nique used in the system monitoring module of FIG. 1. 

FIG. 10 depicts a flowchart of a typical cluster indexing 
technique to organize clusters for faster system monitoring. 

FIGS. 11A and 11B collectively depict a flowchart of an 
embodiment of a techniaue to access a cluster in a cluster 

i l  

ior by extracting general classes of nominal data from 
archived data sets and is thereby able to monitor the system 
by comparing real-time operational data with these classes 
in the knowledge base. 

FIG. 1 depicts a high-level block diagram of a typical 
implementation of IMS 20. Some embodiments of IMS can 
be summarized as follows, with reference to FIG. 1: A set of 
training data 22 is obtained from actual system sensors or 
simulated system performance. Nominal operating regions 

30 (or “clusters”) are extracted from the training data bv IMS. 

25 

database organized in accordance with the indexing tech- 
nique of FIG. 10. 

FIG. 12 depicts a flowchart of an embodiment of a 
technique using the system monitoring module to generate 

FIG. 13 depicts a flowchart of an embodiment of a 
technique to adjust erroneous parameters in the system 
monitoring module of FIG. 1. 

FIG. 14 depicts a high-level flowchart of an embodiment 
of a technique to generate a diagnostic cluster database in the 40 

training data for another learning application. 35 

u 

typically operating through an inductive learning module 24, 
and stored in a system monitoring knowledge base, or 
cluster database 26. As data is acquired from sensors on an 
actual, operating, system, that is, monitored system data, 28, 
a system monitoring module 30 of IMS compares the data 
acquired from monitored system 28 with the clusters of the 
cluster database 26 to determine the monitored system’s 
performance or status 32. Thus, IMS learns system behavior 
and stores that knowledge in a database, which is compared 
with data from actual operating systems to monitor that 

inductive learning module and, in the system monitoring system’s performance or “health.” 
database, monitoring data using the diagnostic cluster data- FIG. 2 depicts a vector 40 or data vector. The data vector 
base. 40 is the basic data structure of the IMS and comprises a set 

FIG. 15 depicts a high-level block diagram of an exem- of N parameter values, P, 42 to PN 44. Each vector 40 is an 
plary computer system that can be used for implementation 45 ordered list of data parameters 42-44 (also referred to as 
of the inductive monitoring system. vector elements or members). The data parameter values 

FIG. 16 depicts a schematic block diagram of the sub- 42-44 are collected from the training system or the moni- 
system of the Hybrid Combustion Facility for oxygen vapor- tored system by a data acquisition process, or produced by 
ization and oxygen supply to the combustion chamber. means of a system simulation. In another embodiment, the 

FIG. 17 depicts a typical vector used by the inductive 50 vectors 40 can contain derived parameter values computed 
monitoring system to learn and then to monitor the perfor- from the collected data parameter values andor parameter 
mance of the oxygen supply subsystem of the Hybrid values derived from data acquired at different times (from 
Combustion Facility. different data “frames”). The values used in a given data 

vector may be collected simultaneously by the data acqui- 
55 sition system, or collected over a period of time. The user 

specifies the size and contents of the vector structure appro- 
DETAILED DESCRIPTION OF THE 

INVENTION 

After considering the following description, those skilled 
in the art will clearly realize that the teachings of the 
invention can be readily utilized for monitoring the perfor- 
mance of systems, or system health, in real-time or near- 
real-time. 

The Inductive Monitoring System (IMS), in its various 
embodiments and implementations, is used to build or 
generate one or more “system monitoring knowledge bases 
or databases” also referred to as “knowledge bases or 
databases” or “cluster database(s)” without distinction. The 

priate for the monitoring application. 
FIG. 3 depicts an exemplary data vector 50. The name of 

each data parameter is shown above its value. For example, 
60 data parameter 52, Pressure A, has a value of 2857.2. The 

names of the other data parameters are Valve 1 Position 54, 
Pressure B 56, Valve 2 Position 58, Pressure C 60, Tem- 
perature 1 62 and Temperature 2 64. 

IMS is advantageously used for those cases in which it is 
65 particularly difficult to construct detailed system diagnostic 

models of the system (or some components thereof) due to 
the complexity or unavailability of design information. IMS 
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system monitoring knowledge bases, or cluster databases, other corners, 100 and 102, of the minimum bounding 
can be constructed entirely from several sets of nominal rectangle 900 are defined by the (Pl,zow, P2,hzgh) and (Pl,hzgh, 
sensor data, either gathered directly from the sensors of the P2,zow), respectively. 
system to be monitored during actual operation, or gathered FIG. 7 depicts a flowchart of an embodiment of the 
from system simulations, or both. IMS analyzes the nominal 5 generation of a cluster database by the inductive learning 
system data and forms classes, or clusters, of expected module 24 of FIG. 1. In step 110, the inductive learning 
system sensor values. These classes are used to build a module typically begins the training process with an empty 
system monitoring knowledge base. Data used to construct cluster database. In step 112, the inductive learning module 
classes of expected sensor values and the system knowledge determines if any training data is available. If not, in step 
database are called “training data” whether obtained from i o  114, the process ends. If, in step 112, the inductive learning 
actual system operation, simulations or both. module determines that training data is available, in step 

FIG. 4 depicts a typical cluster 70. IMS “learns” the 116, the inductive learning module reads the training data 
operating characteristics of the system by processing train- and formats the training data into an input vector. Alternately 
ing data sets containing nominal system data collected either the inductive learning module receives real-time training 
from the monitored system itself or from an accurate simu- 15 data. In step 118, the inductive learning module determines 
lation of the system, or both. IMS processes the training data if the cluster database is empty. If so, in step 120, the 
by formatting the data into the predefined vector format and inductive learning module forms a cluster based on the 
building a knowledge base containing clusters of related values of the input vector, inserts the cluster into the cluster 
value ranges for the vector parameters. In some embodi- database, and proceeds to step 112. In one embodiment, to 
ments of the present invention, each cluster defines a range 20 form the cluster, the inductive learning module adds prede- 
of allowable values for each parameter in a given vector. termined high initialization values to respective parameter 

In cluster 70, a first cluster vector 72 comprises the values values of the input vector to form a high value for each 
of the upper limit, that is, a high value, for the parameters, parameter of the cluster, and subtracts predetermined low 
Pl,hzgh to PN,hzgh, 74 to 76, respectively; and a second cluster initialization values from respective parameters of the input 
vector 78 comprises the lower limit, that is, a low value, for 25 vector to form a low value for each parameter of the cluster. 
the parameters Pl,zow to PN,zow, 80 to 82, respectively. In one When a new cluster is formed from a single input vector, it 
embodiment, a cluster defines a range of values for a subset is frequently advantageous to expand the parameter values 
of the parameters of a vector. Alternately, a cluster defines a of the input vector to accommodate for data uncertainty 
range of values for each parameter of a vector. andor to provide for a more general initial cluster definition. 

If, in step 118, the inductive learning module determines 
from the nm&ored system for a given vector are compared that the cluster database is not empty, in step 122, the 
to the values of the clusters in the cluster database. If the inductive learning module determines which cluster in the 
clusters were generated from nominal data and if all the cluster database has parameter values closest to the input 
values of a vector from the monitored system fall within or vector, ‘‘Closest’’ is defined in terms of a defined ‘‘distance” 
near the Parameter ranges defined by one of these clusters, 35 between the input vector and the cluster. To determine the 
that vector is deemed to contain nominal data. distance, a variety of definitions for a distance metric can be 

FIG. 5 depicts an exemPlaV cluster 90 for the Parameters used. In one embodiment, the standard Euclidean distance 
of the vector of FIG. 3. The name of each Parameter is metric determines a distance D between the input vector and 

prises the high values or upper limits for respective param- 40 
eters. The second cluster vector 94 comprises the low values 
or lower limits for respective parameters. 

Each data vector can be considered a point in N-dimen- 
sional space where N is the number of parameters in the 
vector. As described above, a cluster defines an interval, that 45 
is, a range of possible values for the parameters in a vector. 
A vector representing a point contained in a cluster will In which the summation is Over all N Parameters in each 
contain a value for each parameter within the range specified vector and y. 
in the cluster for the corresponding parameter. The high and The distance metric, Whether defined by Eq. 1 or an 
low values for each parameter in the vectors in a cluster can 50 alternative, typically determines the distance between two 
be thought of as points that define the comers of an N-di- vectors or points in the N dimensional space. Since a cluster 
mensional ‘‘minimum bounding rectangle,” All points con- will generally contain more than one vector, determining the 
tained in a cluster will thus be contained inside or on an edge distance from a vector to a cluster involves generalizing the 
of that rectangle, FIG. 5 depicts an exemplary cluster application of a distance metric to accommodate a multi- 
showing minimum and maximum parameter values for the 55 vector cluster. Several procedures can be used. A cluster 
parameters of the vector of FIG. 3. reference point within the cluster can be selected and all 

FIG. 6 depicts an example of a two-dimensional mini- “distances to the cluster” defined to be the distance to the 
mum bounding rectangle 900 for an exemplary cluster, The cluster reference point. Acentroid value can be computed for 
cluster has two parameters, first and second parameters, p, each parameter of the vectors in the cluster and this centroid 
and P,, respectively. The first parameter P, is plotted on the 60 Point used as the cluster reference Point. 0 t h  weighted 
x-axis 920. The second parameter P, is plotted on the y-axis averages ofthe Parameter values Or mean Parameter values 
940. A first cluster vector, that defines the upper limits, of each vector in the cluster can also be used to determine 
contains parameter values (P, ,hzgh, P2,hzgh) and forms an a cluster reference Point. Specific examples are dwxibed 
upper corner 960 of the minimum bounding rectangle 900. below. 
A second cluster vector, that defines the lower limits, con- 65 The concept of “distance to a cluster” is not restricted to 
tains parameter values (Pl,zow, P2,zow) and forms a lower the use of a single cluster reference point with “distance” 
corner 980 of the minimum bounding rectangle 90. The determined according to a distance metric from the input 

During system monitoring, the Parameter values collected 30 

shown above the values. The first cluster vector 92 com- a selected point in the cluster as follows in Eq. 1: 

Eq. 1 
W X ,  Y )  = c [XI - Y,I2 vl‘ 
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vector to the reference point. The goal of such a calculation mines if the input vector is contained within the closest 
is to provide a quantitative measure of “nearness” of the cluster of step 122. If so, the inductive learning module 
input vector to various clusters in the database such that, in proceeds to step 112. 
generating the cluster database, the input vector can be If, in step 124, the inductive learning module determines 
assigned to an existing cluster or used to initiate another 5 that the input vector is not contained within the closest 
cluster. For system monitoring, the “nearness” definition cluster, in step 126, the inductive learning module deter- 
should be capable of distinguishing normal from anomalous mines whether the parameter values of the input vector are 
system behavior. These criteria can be fulfilled by a “dis- close enough to include that input vector in the closest 
tance” concept involving several vectors of the cluster as cluster. A “cluster-expansion-distance threshold value,” that 
well as the use of a “distance” to a single exemplary cluster i o  is specified by a user, defines a maximum distance between 
reference point. For example, in some embodiments of the the input vector and the closest cluster such that the input 
present invention, the parameter values of the input vector vector will be incorporated into the cluster. If the distance 
are compared to the upper and lower parameter values of the from the input vector to the closest cluster, determined 
vectors of the cluster and the differences are summed (in above, is not greater than the specified cluster-expansion- 
some embodiments, taking account of algebraic signs of the 15 distance threshold value, in step 128, the inductive learning 
differences to account for input vectors lying within a module expands the closest cluster to include the input 
previously-determined cluster). Such a multi-vector “dis- vector. In other words, the cluster parameter ranges are 
tance” concept is used in the example of the Hybrid Com- expanded to include the input vector in the cluster, thereby 
bustion Facility described herein. redefining the extent of the closest cluster. Step 128 proceeds 

eter values of the input vector are represented by X, and the In another embodiment of step 128, the cluster parameter 
respective parameter values of the cluster reference point are ranges are expanded more than the minimum values that 
represented by Y,. would include the input vector in the cluster. Such super- 

The cluster reference point can be selected in a variety of minimum parameter expansion is a useful procedure for 
ways. For example, in one embodiment, the cluster reference 25 allowing for uncertainty in the data measurements andor to 
point is taken to be the cluster centroid, which is defined as further generalize the training examples. The desired expan- 
the average of the high and low values for each parameter in sion factors can also be specified by the user. For example, 
the vectors contained in the cluster. Referring to FIG. 6, the range for each updated parameter in the cluster can be 
point 104 represents the centroid. In another embodiment, expanded by the difference between the value of the param- 
the cluster reference point is defined as the cluster mean 30 eter in the input vector and the nearest value to the input 
vector constructed using the mean value of every parameter vector, plus a percentage of that value. A 2% expansion 
contained in the cluster. Yet another embodiment defines a factor is adequate in many cases, particularly in cases with 
cluster reference point as that vector in the cluster having fairly focused clusters. One could also expand by a percent- 
parameter values as close as possible to each corresponding age of the difference between the parameter in the input 
parameter value in the input vector. Using this embodiment, 35 vector and the cluster centroid. In addition, one could use an 
in FIG. 6, point 100 is the closest point in the cluster to the expansion factor to compensate in an approximate way for 
input vector 106, and the distance D is determined between the estimated accuracy of the particular sensor generating 
points 100 and 106 using the Euclidian distance formula the parameter. That is, if a sensor is known to be accurate to 
above. Based on the distance from the input vector to the approximately 5%, one can add or subtract 5% for the value 
cluster reference point, D, the inductive learning module 40 of that parameter in the vector. Other correction procedures 
selects the cluster with the shortest distance D to the input can also be applied depending on the particular character- 
vector as the closest cluster. istics of the system under study and the monitoring appli- 

Other techniques can also be used for selecting the cluster cation. 
reference point. Different choices for cluster references If, in step 126, the inductive learning module determines 
points can affect the performance of IMS by altering the 45 that the parameter values of the input vector are not suffi- 
parameter tolerances in individual clusters and the number ciently close to include the input vector in the cluster, the 
of clusters in the final IMS knowledge base. For example, inductive learning module proceeds to step 120 to form the 
determining the distance between a vector and the closest input vector into a new cluster. In other words, if the distance 
point in a cluster rather than the centroid would typically between the input vector and the closest cluster is greater 
result in shorter distances and be likely to incorporate more 50 than the cluster-expansion-distance threshold value (possi- 
training vectors into fewer clusters rather than create a larger bly including any expansion factors), a new cluster is 
number of distinct clusters. Conversely, determining dis- generated based on the input vector. 
tance from the input vector to the furthest point in the cluster It is often advantageous to scale or normalize the data 
would be likely to result in a larger number of smaller values before they are inserted into the vectors. Arbitrary 
clusters in the database. Smaller clusters (i.e., a smaller 55 choices for units of measurement can cause some data 
distance between upper and lower bounds) would typically values to be represented by large numbers while other data 
provide tighter monitoring tolerances, which may not be values are represented by small numbers, tending to skew 
desirable on systems with low accuracy or noisy sensors. calculations by over-weighting the large numbers. This is 
Also, larger numbers of clusters in the database could frequently undesirable and can be ameliorated or avoided by 
increase the search time to identify the “nearest” cluster to 60 normalizing data values. Several normalization procedures 
an input vector, which may be disadvantageous for moni- can be employed. 
toring a system with a high data rate or monitoring with a FIG. 8 depicts a flowchart of an embodiment of the 
slower computer. A balancing of database size with moni- inductive learning module which scales or normalizes at 
toring tolerance for the particular application is typically least a subset of the input parameter values of the input 
desirable. 65 vector. FIG. 8 is the same as FIG. 7 except for block 132; 

After determining the cluster that is closest to the input therefore the differences will be described. Step 116 reads 
vector, in step 124, the inductive learning module deter- the data to fill an input vector. In step 134, the inductive 

Using the Euclidian distance metric of Eq. 1, the param- 20 to step 112. 
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learning module scales at least a subset of the input data of An important function of IMS is to monitor system health, 
the input vector. In another embodiment, represented by and IMS is not primarily intended to provide thorough 
block 132, steps 116 and 134 are combined to scale the input system diagnostic information for off-nominal performance. 
data as it is read and before it is stored in the input vector. However, some diagnostic information is available with 

For example, in one embodiment, each parameter is 5 IMS that can, in some circumstances, provide useful guid- 
scaled to represent a percentage (or fraction) of a maximum ance. For example, the amount by which off-nominal data 
range for that parameter, thereby causing every data value, fails to meet the required threshold criteria (that is, the 
d,, of the vector to lie in the range OSd,S 100.0 (or “distance” from the nearest cluster) can provide information 
OSd, S 1 .OO). This normalization procedure can be used to as to the severity of the anomalous performance. In addition, 
give the user a more intuitive understanding of the moni- i o  the particular cluster closest to the suspicious system data 
toring knowledge database and the significance of any can also provide useful guidance as the possible nature of the 
off-nominal system behavior encountered during system anomalous performance (andor exclude certain types of 
monitoring. system malfunctions). 

In another embodiment, to scale the data, parameter If IMS detects off-nominal system performance, it can 
values are weighted in comparison to other parameters, 15 respond in at least one or more of the following ways: a) 
rather than being normalized to provide each parameter with Alert the operator to the suspicious data. b) Activate system 
substantially equal weight. For example, scaling a parameter diagnostic procedures andor software. c) Alter the mode of 
to have a larger possible range relative to other parameters system operation in response to the suspicious data includ- 
in the vector will tend to amplify any deviations in that ing initiating emergency shut-down. d) Determine the 
parameter. 20 degree of “off-nominal” behavior andor the nearest class 

In addition to those described herein, other combinations defining nominal performance. Select one or more responses 
of data normalization and distance metrics may be useful for based on the results of this determination. 
various situations and can be empirically determined with Automatic system health monitoring can significantly 
typical training data and, in some embodiments, assumed benefit from an accurate characterization or model of 
off-nominal system data. 25 expected system behavior, that is “nominal” behavior. 

After IMS processes all of the training data, the result is Among the advantages of IMS is the avoidance of difficul- 
a database of clusters (the system monitoring knowledge ties often encountered in producing detailed health moni- 
base) that characterizes system performance in the operating toring andor diagnostic models of some systems andor 
regimes covered by the training data. Each cluster defines components, typically arising from the complexity andor 
one set of constraints on the values allowed for each 30 the unavailability of design information. Many current 
parameter in any particular monitoring input vector. If there health monitoring schemes simply monitor system param- 
is no cluster in the monitoring knowledge base that contains eters one-by-one to ensure they do not exceed predetermined 
a given input vector or is “near” that input vector, then the extreme thresholds. Such monitoring systems may not be 
system is behaving in an unexpected manner indicating a able to detect early signs of anomalous behavior not involv- 
possible system anomaly. 35 ing the beyond-threshold excursion of any one parameter. 

In another embodiment, IMS comprises a system moni- Some monitoring systems utilize an “expert” knowledge 
toring module 30 (FIG. 1) that monitors a system by base or a detailed system model to provide tighter monitor- 
comparing incoming data with the clusters in the cluster or ing tolerances. Such techniques may not be feasible when 
knowledge database to determine the “distance” (defined system complexity andor lack of resources (computing or 
below) from the incoming sensor data to the nearest knowl- 40 otherwise) makes it difficult to develop such detailed mod- 
edge base cluster (or clusters). If the incoming sensor data els. In addition, even when such an expert knowledge base 
lies sufficiently close to a cluster of the knowledge base or detailed system model can be constructed, it is frequently 
derived from nominal system performance, the system is too complex for feasible computer processing in real-time. 
deemed to be functioning normally since it is sufficiently It is desired in many applications that system health be 
close to previous normal behavior. “Sufficiently close” is 45 monitored rapidly as the system is in service to detect and 
determined by threshold parameters supplied by the user to commence ameliorating action before off-nominal behavior 
take into account that training data will not generally span becomes irretrievable or catastrophic. Examples are pre- 
the entire space of normal system operation, and the sensor sented herein in which IMS responds in sub-millisecond 
data from nominally operating systems is inherently subject times when monitoring the health of a complex engineered 
to a level of “noise,” causing deviations in data received 50 system (in particular, NASA’s Hybrid Combustion Facility). 
from sensors even for identically-operating systems. Other technologies, such as neural networks and decision 

In the event an incoming data vector has the same trees, have been applied to the monitoring of complex 
minimum distance with respect more than one cluster, that systems attempting to overcome the modeling difficulties 
is, a tie, several procedures are possible. In some embodi- noted above. Such techniques typically suffer from the 
ments, the primary result of system monitoring is the dis- 55 limitation of requiring both nominal and off-nominal train- 
tance to the nearest cluster from which a decision is made ing data in order to produce a feasible monitoring system. In 
“nominal or off-nominal,’’ in which case it does not matter addition, such monitoring systems typically produce system 
which of two or more equidistant nearest clusters are con- “models” that are difficult for humans to interpret. Since 
sidered. Ties become significant if the system monitoring off-nominal system data is frequently difficult to obtain, IMS 
procedure further examines the relationship of the input data 60 is designed to avoid this difficulty by building a system 
vector to the nearest clusters (such as deriving information monitoring knowledge base entirely from nominal system 
from the degree of deviation of individual parameters), or if data. The resulting IMS knowledge base clearly shows 
clusters are distinguished among themselves (e.g. nominal relationships between system parameters during normal 
vs failure, or clusters deriving from different operating operation and, in most cases, is easily processed to provide 
modes). Distinguishing nearest neighbor ties in such cases 65 real-time (or near real-time) monitoring ability. 
typically depends on the details of the particular application FIG. 9 depicts a flowchart of an embodiment of the 
under study. system monitoring module 30 of FIG. 1. In step 140, the 
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system monitoring module receives an input vector, also sensor readings can be summed and divided by the number 
referred to as a monitored-system vector. In one embodi- of readings to construct an average value for that particular 
ment, the system monitoring module formats real-time (or parameter. Median values can also be accumulated, among 
near-real-time) input data into monitored system vectors. In other approaches to collecting time-accumulated sensor 
another embodiment, the system monitoring module scales 5 data. This approach provides different information from 
andor normalizes the monitored-system vectors as collecting and analyzing IMS output data over time, and 
described above with reference to FIG. 8. In step 142, the provides an important and useful technique for monitoring 
system monitoring module determines whether any cluster system behavior. 
contains the monitored-system vector. If so, in step 144, the Indexing and Retrieval system monitoring module indicates that the system is i o  
operating within nominal and proceeds to step An efficient indexing and method is 

mines that no cluster contains the monitored-system vector, IMS to Operate in In Order to 
in step 146, the system monitoring module queries the allow searching the IMS cluster database for the closest 
cluster database to determine which cluster is closest to the 15 Some embodiments Of the indexing and 

scheme include a distance metric by which “closest” is monitored-system vector. 
In step 148, the system monitoring module determines defined and the ability to return the record of the cluster that 

whether the distance between the monitored-system vector is to the query Point hut vector), not limited to 
and the closest cluster exceeds a predetermined tolerance. In those containing the query point. The ’peed Of 

embodiments, the system monitoring module is 2o search and retrieval should also be sufficiently fast so as to 

merit inaccuracies by setting a tolerance on the maximum efficient indexing and retrieval scheme can also help to 
allowable distance between the monitored-system vector increase the speed of the initial IMS training process, since 
and the closest cluster for the monitored-system vector to be training performs “closest queries. 
considered nominal data, That is, the input monitored- 25 Various embodiments of the cluster indexing and retrieval 
system vector is -close enough” to its closest cluster to be methods used in connection with the present invention make 

or equal to the predetermined tolerance, in step 150, the nient to describe first those embodiments employing a single 
system monitoring module indicates that the monitored indexing reference point and then describe generalizations to 

distance is greater than the predetermined tolerance, in step points. 

tored system is operating outside nominal parameters. cluster indexing technique employing a single indexing 
ne system monitoring module of IMS can also, in reference point. In some embodiments, the cluster indexing 

embodiments, make use of multiple tolerance values 35 technique is part of the inductive learning module. In other 
(“TV~”) to determine the level of alert, ~n input vector embodiments, the cluster indexing technique is implemented 
outside the tightest tolerance TV, may justify that an alert be in a separate module. The cluster indexing and retrieval 
issued to the system operator. Input vectors lying outside technique typically makes use of the cluster distance con- 
increasingly generous tolerances, TV,, TV,, TV,, . . . cept. In step 160, an indexing reference point is selected. The 
(TV~<TV,<TV,<TV, , , , could IMS to alert the 4o choice of the indexing reference point is substantially arbi- 
system operator to the possibility of increasingly Severe trary and can be chosen for convenience of calculation. For 
system malfunctions. For monitoring systems requiring example, the indexing reference point can be the origin (all 
extremely fast response times, a single distance tolerance of parameter are zero), located to many clus- 
0 may be appropriate (Le., O=TV,=TV,=TV,=TV, . . . ). ters, among Other choices. 
This allows queries to the knowledge base to check only 45 In step 162, a distance, referred to as the ordering dis- 
whether or not an input vector is contained in a cluster, tance, from the indexing reference point to each cluster is 

the vector’s distance from each cluster examined. determined from the indexing reference point to a cluster 

health or track general system behavior over time. For 50 maximum and minimum values of the distance from the 
example, a larger vector can be formed by concatenating two indexing reference Point to cluster members, among other 
or more consecutive sets of sensor data and this larger vector m&ods. The ordering distance may be determined using the 
used with IMS techniques, some embodiments of IMS can Euclidian distance formula described above, among others. 
monitor the distance from nominal clusters of input vectors AnY of the techniques above for determining a cluster 
received during the time interval of interest, including the 55 reference Point may be used. 
information that input vectors lie within a cluster, outside a In step 164, the clusters are then sorted in accordance with 
cluster but within the tightest tolerance, the identity of the their associated ordering distances. In step 166, the clusters 
nearest cluster, among other attributes. Time dependent are organized into a data structure, such as, for example, a 
behavior of such distance data can be displayed in graphical list or search tree structure, based on the ordering distances. 
form for the operator, transmitted to a diagnostic program 60 For example, the origin, in which all vector parameters are 
for more detailed analysis, stored for future display andor equal to zero, can be selected as the indexing reference 
analysis, among other processing options. Another tech- point, and the minimum distance between the origin and 
nique by which IMS can capture time dependent behavior each cluster is used as the cluster index. The clusters can 
over shorter time scales is to form vectors from several then be sorted into a list with ascending index (ordering 
consecutive sets or frames of sensor data. That is, one vector 65 distance) value. 
includes data from several (or a great many) data readings In other embodiments, the list of clusters can be 
collected from the same sensors. For example, successive assembled into a plurality of sublists, typically determined 

140, If, in step 142, the system monitoring module deter- advantageous in increasing the ’peed Of IMS and 
Or 

allowed to account for incomplete training data or measure- keep with the anticipated rate Of data acquisition. An 

considered nominal, If, in step 148, the distance is less than use Of One Or more indexing reference Points. It is conve- 

system may be operating properly. If, in step 148, the 30 those embodiments using 

152, the system monitoring module indicates that the moni- 

indexing reference 

embodiments Of a lo depicts a flowchart Of 

thereby saving the time that would be required to compute 

Some embodiments of IMS can gauge general system 

determined. AS noted above, “distance to a cluster” can be 

reference point selected for each cluster, or making use of 
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by a range of distances from the indexing reference point to If step 184 determines that a cluster Ci does not include 
the cluster. For example, one sublist can be constructed points that are a distance between (Dv-Cv) and (Dv+Cv) 
containing clusters from 0 to 100 distance units away from away from the indexing reference point, the process pro- 
the indexing reference point. A second sublist having clus- ceeds to step 192. If step 188 determines that DizDv, the 
ters from greater than 100 to 200 distance units away from 5 Process Proceeds to step 192. 
the indexing reference point, and so forth until all clusters When the clusters are organized into sublists on the basis 
are included in at least one sublist, As described in detail of distance, a different search strategy can be advanta- 
below, multiple indexing reference points can also be geously employed. The search begins by searching the 
employed, in which multiple sublists will result, and a 
cluster can appear in more than one sublist. 

FIGS. 11A and 11B collectively depict a flowchart of a 
typical technique to access or to locate the cluster closest to 
a given input vector. The inductive learning module andor 
the system monitoring module may use the technique of 
FIGS. 11A and 11B. The technique will be described in the 
context of the system monitoring module. 

In step l 7 O >  the system monitoring receives a 
vector, V. In step 172, the system monitoring module deter- 
mines the distance Dv between the predefined indexing 2o have been searched, 
reference point that was used to index the clusters and the 
vector V. In step 174, an initial cluster Cc is selected from ited to a single indexing reference point, m, but can 
the cluster database. In some embodiments, cluster Cc is multiple indexing reference points, m, n, o, 

at random cases, the process of narrowing the cluster search is iterative. 

In step 176, the distance Cv from the cluster Cc to V is members are those clusters that lie within a distance 
determined. Dv,+Cv of the first indexing reference point, m. From this 

If the clusters are organized into sublists, the sublists can set ofclusters, the “m set,” a second set ofclusters is chosen 
be advantageously employed to help in the selection of a whose members also lie within a distance Dv,+Cv of 
cluster CC close to the input vector V. For example, the initial 30 reference point n, the “mn set.” This process proceeds, 
cluster Cc is conveniently chosen as the first cluster in that producing sequentially “mnop . . . sets” of clusters until all 
sublist that covers the distance range including the distance reference points have been used. Since the procedure is 
of the input vector from the indexing reference point. essentially an iterative process of set intersection, at each 

It can then be shown that any cluster in the database that stage the size of the set of clusters to be searched will 
is closer to the vector V than Cc must include points that are 35 typically decrease but may stay the Same size. The cluster 
a distance between MAXCO, (Dv-CJ} and (D,+C,) away search is thus narrowed to the (typically) smaller set of 
from the indexing reference point. For economy of notation clusters, for example, the mno set for the case of three 
we will use the expression Dv-Cv herein, understanding that indexing reference points. 
if this expression is negative, it is taken to be zero. A proof These indexing and retrieval schemes (including varia- 
ofthis proposition is included in the Appendix, incorporated 40 tions with more than one reference point and different search 
herein by reference in its entirety. Thus, an efficient search- data structures) have proven to be effective with IMS system 
ing procedure involves beginning the search at the beginning monitoring, but other schemes can be adapted as warranted 
of the list and computing distances from the vector V to by the deployment and size of the cluster database. 

(D,+C,). If a cluster is found that is closer to V than Cc, say 45 efficiency, a separate IMS cluster database could be gener- 
Ck, adjust C, to reflect the distance from vector V to cluster ated for different modes of system operation, and the appro- 
Ck and continue the search. If a cluster is found that contains priate database queried when the system is operating in the 
V, stop the search and return that cluster. Otherwise, con- mode appropriate for the particular knowledge base. For 
tinue the search in ascending index order until the minimum example, rather than have a single knowledge base for 
distance from vector V to the current cluster is greater than 50 monitoring the performance of a helicopter, one could 
(D,+C,) and return the closest cluster located thus far. construct separate databases for hovering, idling, climbing, 

and other modes of operation, and query the appropriate 
database for the particular mode of helicopter operation. 

begin at a first cluster C1 on a list of clusters. Step 180 This embodiment of IMS involves preselecting a knowl- 
determines if cluster Ci contains the vector V. If so, in step 55 edge database to query from among a plurality of knowledge 
182, the search ends. If not, step 184 determines if a cluster databases on the basis of one or more system parameters. 
Ci includes points that are a distance between (Dv-Cv) and Query efficiency can be additionally increased by making 
(Dv+Cv) away from the indexing reference point. If so, in use of sublists as described above. 
step 186, a minimum distance Di between the vector V and As noted, in another embodiment, selecting a monitoring 
the cluster Ci is determined. Step 188 determines if Di is less 60 distance tolerance of zero can increase monitoring speed. 
than Dv. If so, in step 190, Cv is adjusted to reflect the new This embodiment eliminates the calculation of distances 
distance. In other words, Cv is set equal to Ci. The flowchart between the input vector and database clusters. Zero dis- 
continues to FIG. 11B. Step 192 determines if there are more tance tolerance also allows the use of more efficient search 
clusters in the list to check. If so, step 194 increments i by structures. Any search technique that is able to determine if 
one to point to the next cluster, and proceeds to step 180. If 65 an input vector is contained in a cluster is appropriate. A 
step 192 determined that there are no more clusters in the list decision tree structure similar to those produced by Quin- 
to check, in step 196, the process ends. lan’s ID3 system can provide efficient monitoring perfor- 

sublist that includes the distance from the input vector to the 
i o  indexing reference point, typically following the methods 

described in FIGS. 11A and 11B. If a match is found (that is, 
a cluster contains the input vector), the search terminates and 
the cluster found to contain the input vector is returned as the 
result of the search. If no match is found, adjacent (in 

15 distance) sublists are searched in the same manner if they 
any region of distance in the range Dv+Cv, If no 

sublists satisfy these criteria, the most recently located 
cluster nearest to the input vector is returned. The search 
continues until all sublists covering the distance Dv+Cv 

The present indexing and retrieval schemes are not lim- 

to the vector v. cc can be 
but it is advantageous if Cc is reasonably close to vector, v. 25 Initially, a set of clusters is selected for searching whose 

clusters that cover any portion of the distance range of Additionally, to limit database size and increase query 

In step 178, a counter, i, is set equal to one to 
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mance in this case. The branch points of the decision tree (s) is adjusted such that the parameter(s) will match any 
would be determined by the parameter ranges represented in range specified for that parameter in any cluster to provide 
the IMS clusters. The use of sublists can further increase an adjusted monitored-system vector. In step 218, the 
query eficiency. adjusted monitored-system vector is compared against the 

Other techniques can be used with IMS to build decision 5 cluster database. 
trees, artificial neural networks, support vector machines, or In addition to scaling input parameters, it is often advan- 
other structures that use training sets including both nominal tageous to scale the IMS output to represent a percent 
and off-nominal data in order to generate a system moni- deviation from the nominal value, or other value readily 
toring knowledge base. IMS can be used to generate data for interpreted by a human operator. For example, if the range 
these types of systems, among others, using only nominal i o  of distances available in the parameter space is from 0 to 
training data. It may also be desirable to convert an IMS 94000 and IMS returns a distance to the nearest cluster of 
knowledge base into one of these other forms to facilitate 940, “1% deviation” is likely to provide more meaningful 
integration with an existing monitoring system, or to provide information to the operator than the raw data of “940 
a more compact knowledge representation. deviation.” 

FIG. 12 depicts a flowchart of an embodiment of a 15 Several courses of action could be taken if a query to the 
technique for using the system monitoring module to gen- IMS finds that a data vector is suspect during system 
erate training data for another learning application, typically monitoring. For instance, the anomaly could be logged, an 
non-IMS. To produce training data suitable for these other operator could be notified, or an automated diagnostic 
techniques, one can submit a wide variety of data vectors to routine could be invoked. It is also possible to use the IMS 
an already-generated IMS knowledge base (generated with 20 techniques to produce diagnostic databases if there are data 
nominal data) and record the results. In step 200, data sets available that represent known system anomalies. A 
vectors are received having both nominal and off-nominal system simulator that allows simulated failures or data from 
data values. In one embodiment, the nominal and off- specific system failure tests are useful for producing IMS 
nominal data values may be evenly distributed in the vector diagnostic databases. One could train IMS using the anoma- 
space, or, alternately, strategically selected for effective 25 lous data for a given failure in the same way that it is trained 
training of the secondary (non-IMS) learning application. In using nominal data. When off-nominal data is detected by 
step 202, the data vectors are compared against the cluster IMS, the suspect vectors can be compared to the diagnostic 
database to provide a comparison-result for each data vector. cluster databases. If there is a close match with a particular 
In step 142, the data vector-comparison-result pairs are database, then the failure represented by that database is a 
supplied as training input data to the secondary learning 30 candidate for the diagnosis. 
application to produce a desired monitoring knowledge FIG. 14 depicts a high-level flowchart of an embodiment 
base. In one embodiment, for example, the comparison- of a technique to generate a diagnostic cluster database in the 
result indicates whether the data vector is in a cluster, that is, inductive learning module and monitoring data, in the sys- 
has nominal parameter values, or not in a cluster, that is, has tem monitoring module, using the diagnostic cluster data- 
off-nominal parameter values. In another embodiment, 35 base. In step 220, the inductive learning module generates a 
depending on the secondary learning application, the cluster database using anomalous data for a given failure. In 
numeric IMS vector distance values are used as the “com- step 222, the inductive learning module annotates that 
parison-results” for each input vector. In yet another cluster database with the failure that was manifested to 
embodiment, grouping thresholds are defined to group provide a diagnostic cluster database. In step 224, when 
ranges of distances values into classes and a class identifier 40 off-nominal data is detected, the system monitoring module 
is also supplied with the “comparison-results” for training compares the monitored-system vector to the diagnostic 
the secondary learning application. cluster database to attempt to identify the failure. If a 

When monitoring with IMS, it is possible for a monitoring monitored-system vector is within, or suficiently close to, a 
parameter contained in the IMS cluster database to become particular cluster in the diagnostic cluster database, a user 
irrelevant or unusable for the monitoring task. For example, 45 could be informed of the annotation describing the failure 
a system sensor may fail and give erroneous readings that associated with the particular cluster, among other possible 
cause false alarms. One way to deal with this situation is to actions. 
redefine the parameter vector and regenerate the cluster FIG. 15 depicts an illustrative computer system 250 that 
database without the unreliable parameter(s). In another utilizes the teachings of the present invention. The computer 
embodiment, the monitoring search technique adjusts the 50 system 250 comprises a processor 252, a display 254, input 
parameter values so that parameters that rely on the faulty interfaces 256, communications interface 258, memory 260, 
input data will always match any range specified for those and output interfaces 262, all conventionally coupled by one 
parameters in any cluster. This effectively ignores the erro- or more busses 264. The input interfaces 256 comprise a 
neous data at the expense of somewhat less accurate moni- keyboard 266 and mouse 268. The output interface 262 is a 
toring. The distance metric or monitoring tolerances may be 55 printer 272. The communications interface 258 is a network 
adjusted as appropriate to account for changes caused by interface card (NIC) that allows the computer 250 to com- 
parameter exclusions. municate via a network, such as the Internet. Sensors 274 are 

FIG. 13 depicts a flowchart of an embodiment of a also coupled to the processor 252. The sensors 274 supply 
technique to adjust erroneous parameters of the system real-time input data. 
monitoring module. In step 210, a monitored-system vector 60 The memory 260 generally comprises different modali- 
is received. Step 212 determines if any parameter of the ties, illustratively semiconductor memory, such as random 
monitored-system vector is erroneous. For example, the access memory (RAM), and disk drives. Depending on the 
parameters are compared to respective predefined opera- embodiment, the memory 260 stores one or a combination 
tional-input ranges, and if a parameter is outside its opera- of the following: an operating system 280, data acquisition 
tional-input range, that parameter is in error. If not, in step 65 module 282, in some embodiments training system data 22, 
214, the monitored-system vector is compared against the vectors 286, the inductive learning module 24, the cluster 
cluster database. If so, in step 216, the erroneous parameter database 26, the system monitoring module 72, in some 
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embodiments monitored-system data 28 and an annotated lished in the Proceedings of the 54thZnternational 
diagnostic cluster database 290. The operating system 280 Astronautical Congress of the International Astronautical 
may be implemented by any conventional operating system Foundation, the International Academy of Astronautics and 
such as UNIXB, WINDOWSB, and LINUXB, among oth- the International Institute of Space Law, 29 September-3 
ers . 5 October 2003, Bremen Germany, Ref. No. IAC-03- 

The training system data 22 may typically comprise any 
of archived data 292, nominal data 294 and off-nominal data 
296. The inductive learning module 24 typically comprises 
a cluster generation module 302 that, for example, imple- 
ments the flowchart of FIG. 7, or alternately FIG. 8. The 
inductive learning module also typically comprises a “gen- 
erate indexed-cluster module” 304 that, for example, imple- 
ments the flowchart of FIG. 10. The system monitoring 
module 30 typically comprises a cluster retrieve module 310 
that, for example, implements the flowchart of FIGS. 11A 

IAA. 13.1.02 (incorporated herein by reference). 
Prior to a firing of the Hybrid Combustion Facility, 

oxidizer stored in the liquid oxygen (“LOX”) tank is 
pumped through a vaporizer, where the oxidizer is gasified, 

i o  and enters the gaseous oxygen (“GOX”) tank. Over a time 
interval, up to an hour, GOX flows into the GOX tank until 
the tank pressure reaches the required level for the desired 
mass flow rate and run duration. At this point, the LOX feed 
system is isolated from the GOX tank by closing a first 

15 shutoff valve between the vaporizer and the GOX tank. The 
and 11B. operator enters the desired run setpoints into a control 

Various embodiments of the present inventive techniques computer. These set points include parameters for control 
are typically incorporated in the inductive learning module valve scheduling, ignition timing, desired delivery pressure 
24, the cluster database 26 and the system monitoring and configuration information. After a firing countdown is 
module 30. Generally, the inductive learning module 24 and 20 completed, an upstream shutoff valve is opened. The result- 
the system monitoring module 30, are tangibly embodied in ing GOX outflow chokes at an orifice (sonic nozzle) and 
a computer-readable device, carrier or medium, for example, continues into the combustion chamber. A short time later, 
memory 260, and are comprised of instructions which, when the ignition system oxidizer and fuel flow are turned on and 
executed, by the processor 32 of the computer system 250, ignited by a spark. High temperature combustion products 
causes the computer system 250 to utilize the present 25 from the ignition system are injected into the combustion 
invention. chamber to vaporize parafin fuel, which mixes with the free 

Various embodiments of the present invention may be stream oxidizer and the ignition products to ignite the 
implemented as a method, apparatus, or article of manufac- parafin fuel in a self-sustaining combustion reaction. As the 
ture using standard programming andor engineering tech- GOX tank pressure decreases during the course of a firing, 
niques to produce software, firmware, hardware, or any 30 the control valve opens to maintain constant delivery pres- 
combination thereof. The term “article of manufacture” (or sure and constant mass flow to the combustion chamber. A 
alternatively, “computer program product”) as used herein is Venturi in the GOX feed line measures the oxygen flow rate 
intended to encompass a computer program accessible from but is accurate only for steady state operating conditions. 
any computer-readable device, carrier or media. Those The orifice measures the mass flow rate more accurately 
skilled in the art will recognize that many modifications may 35 during transients and also serves to isolate any pressure 
be made to this configuration without departing from the fluctuations in the combustion chamber from the feed sys- 
scope of the present invention. tem. A check valve located upstream prevents reverse flow 

The exemplary computer system illustrated in FIG. 15 is of combustion gases from entering the GOX feed line. Two 
not intended to limit the present invention. Other alternative burst disks located downstream from the orifice and one 
hardware environments may be used without departing from 40 burst disk located upstream from the GOX tank protect 
the scope of the present invention. against over-pressurization. Pressure sensors are located at 

the GOX tank, at the orifice and at the combustion chamber. 
A high frequency pressure sensor for the combustion cham- 
ber and a differential pressure sensor are located at the 

A Hybrid Combustion Facility (“HCF”) at the NASA 45 Venturi. The GOX temperature is measured upstream from 

EXAMPLES 

Ames Research Center is used to investigate the combustion 
properties of hybrid fuel formulations intended for use in 
rocket propulsion. A hybrid rocket is one in which the fuel 
is in a solid form and the oxidizer is in liquid form, a 
formulation that has several potential advantages over con- 
ventional solid or liquid fueled rockets. For example, hybrid 
fuels have increased safety in manufacturing, handling and 
in use. The fuel is not volatile but, unlike conventional solid 
fuel rockets, hybrid fuel rockets can be throttled to alter the 
thrust of the rocket after ignition. The HCF is a scale-up of 
various bench tests of hybrid fuel rockets and is highly 
instrumented. Thus, HCF offers a good opportunity to test 
the Inductive Monitoring System (“IMS’) described herein 
with a realistic operational system and in comparison with 
other techniques for monitoring the performance (or 
“health”) of a complex system as part of an overall NASA 
program to examine various Integrated Vehicle Health Man- 
agement (IVHM) techniques. Numerous references to 
IVHM architectures and applications can be found on NASA 
and other websites, various conference proceedings includ- 
ing the paper entitled “Integrated System Health Manage- 
ment for Reusable In-Space Transportation Systems” pub- 

the orifice. 
IMS was used to build a monitoring knowledge base for 

the gaseous oxygen (“GOX”) delivery system on the HCF, 
as schematically depicted in FIG. 16. The primary function 

50 of the GOX system is to vaporize liquid oxygen (“LOX”) 
and to provide gaseous oxygen to the combustion chamber 
at an appropriate rate to sustain the HCF combustion pro- 
cess. A malfunction in the GOX delivery system would 
typically result in an unexpected flow rate for a given 

55 pressure and configuration of valve settings. For conve- 
nience in capturing flow rate data in the definition of the IMS 
data vector, sensor readings from two consecutive data 
samples (or “frames”) were combined into a single vector. 
As conveniently used in this example, each data vector has 

60 seven data elements as shown in FIG. 17, in which 
“POV-4, Position” is the current position (in degrees 

open) of the shutoff valve (see FIG. 16). 
“PCV-6, Position” is the current position of the control 

valve (situated between the GOX tank and the combustion 

“PIT3, Pressure” is the current pressure of the GOX tank 
(typically in the range from 0 to approximately 3,000 psi). 

65 chamber). 
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“PT6, Pressure” is the feed pressure just upstream of the the new vector and the closest vector in the class are added 
sonic orifice delivering GOX to the combustion chamber to the class (if it is within a specified maximum distance 
(typically in the range from 0 to approximately 3,000 psi). from the class.) 

“PIT3-PT6, Difference,, is the difference between The last training step in this example uses the three 
5 remaining data sets (from the nine) to estimate an upper and and PT6. 

lower error bound for each data parameter. IMS identified 
‘‘pIT3, Change” is the change in GOX tank Pressure PIT3 the class that was “closest” to each of these three new 

since the last data sample. training vectors. However, instead of including the new 
“PT6, Change” is the change in the orifice feed pressure, vector and its neighbors into the closest class, IMS adjusted 

PT6, since the last data sample. i o  a global weight to be added to or subtracted from each vector 
Thus, the seven element data vector of FIG. 17 captures Parameter when testing for class membership. The weight 

four current operating two incorpo- values are intended to compensate for inaccuracies in the 
rating changes from the previous data frame and one param- sensor data and for the limitations of the training data sets. 

the current data frame. Incorporating the pressure change 15 data sets in the third group as “nominal” data, the IMS 
(difference) between PIT3 and PT6 provides a normalization 

eter derived as the difference oftwo other parameters within When a set Of weights was found that Of the 

training was 
parameter that allows IMS to form more general behavior 
classes not depending on specific pressure values for PIT3 

After training as described above, IMS was tested using 
(large Orifice) data sets and four ‘‘off-nomi- 

and PT6. 

other parameter choices, and the like, would also work with 

for the particular example considered here. 

HCF in which sensor data was collected and was sufficiently 
complete for use in training and testing IMS. No significant 

nal” (small orifice) data sets that had not been included in the 
20 IMS training data. Thus, a total of 17 data sets were used, 9 

for testing and 6 off-nominal data sets for testing. The data 

toring knowledge base, presented in the same order as they 
Of the 25 were collected from the HCF. IMS correctly identified the 

off-nominal data sets as suspect soon after the shutoff valve 
was opened, The IMS also correctly processed the two 
additional nominal data sets, finding that the data sequences 

sets used a larger Orifice diameter On the sonic Orifice than 30 edge base. Therefore, we conclude that if IMS were installed 
the other six. The nine “large orifice” data sets were used to in the HCF facility, alerts would have properly been sent for 

mance. The six data sets obtained with the use of the small ing the operator or possibly initiating a system shut-down, 
sonic orifice were then tested against the trained IMS. When 

it is expected that Other data vector definitions, nominal data sets for training, 2 additional nominal data sets 

IMS, the data vector Of l7 provided vectors from each set were processed with the IMS moni- 

Fifteen data sets were from test 

were detected in the performance Of the 
system for any Of the l5 test firings. Nine Of the data were properly included in the nominal classes in the howl -  

train IMS and were defined to be ‘‘nominal’’ system perfor- off-nominal data sets (but not for nominal), promptly alert- 

properly classifying system health, these six “small orifice” 35 
data sets should be reported as “suspect.” 

Example 2 

In addition to actual sensor data collected from HCF 
firings, the IMS was tested on simulated data. Interval 
Constraint Simulator software (“ICs”) was developed at 

The nine data sets collected with large orifice firings of the 40 NASA Ames Research Center to provide a fast, flexible 
HCF (“nominal” data sets), were used to train the IMS. system modeling and simulation tool. Further description of 
Vectors from three of the nine data sets were used as “basis ICs can be found in Attachment A, which is incorporated 
classes” with each vector forming a nominal class contain- herein by reference. The ICs was used to simulate the HCF 
ing one member. Three additional data sets from the nine and to produce 1,200 simulated HCF runs. These simulated 
were used to expand the initial basis class definitions 45 data sets were divided into three groups and used to train the 
through interpolation. For most vectors in these sets, the IMS as in Example 1. However, these simulated data sets 
previously-defined class that was closest to a vector was used to train the IMS and create the monitoring knowledge 
expanded to include the vector as well as any data values base did not reproduce the noise characteristics of actual 
lying between the vector and the class. If a training vector HCF data collected by sensors. As a result the IMS trained 
was too far away from any of the previously defined classes, 50 on simulated data was not effective in monitoring actual 
a new nominal class was formed containing that vector as its (measured) data sets. 
initial member. The class closest to a vector is defined as that IMS monitoring improved on actual data when three 
class that would require the least amount of expansion in actual data sets (including noise) were added to the training 
order to incorporate that vector. Vector distance (or required set. The incorporation of actual data sets allowed IMS to 
expansion) is measured as the sum of percent changes in 55 incorporate data noise characteristics into the knowledge 
each vector parameter that is required to include the new base and more faithfully to monitor the actual HCF perfor- 
vector. For example, if the new training vector is {XS, 23, mance. When this updated knowledge base (including data 
2027, 1202, 825,41, 6) and a class was found containing the sets with actual noise) was tested on simulated data sets not 
vector {XS, 22, 2030, 1200, 830, 44, X}, the difference used for IMS training, this updated knowledge base pro- 
between these two vectors would be {0, 1,3, 2, 5,3,2}. The 60 vided monitoring results similar to that produced by the 
difference for each parameter is then divided by the range of knowledge base trained on strictly simulated data. Thus, the 
possible values for that parameter to obtain a percentage addition of even a small number of actual system data to the 
change. The percentage changes thus obtained are summed, IMS training sets improved IMS performance on actual 
and the result is the “distance” between the new vector and system test data, but did not seriously degrade the perfor- 
the closest vector in the class. Once the class with the “least 65 mance of IMS when tested on simulated test data. 
required expansion” (lowest percentage sum) is identified, Other approaches can be used to train IMS using simu- 
the new vector and vectors with parameters falling between lated data and yet train IMS for monitoring actual operating 

Example 1 
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systems. For example, the acceptable deviations from nomi- 
nal values during system monitoring can be increased to 
account approximately for sensor noise. Additionally, wider 
tolerances can be used when expanding the clusters during 
IMS training to account for expected sensor noise. More 
realistic system simulations (including sensor noise) can be 
employed for IMS training, thereby providing a better match 
to actual system data profiles. 

This ability to train with simulated data enables IMS to 
produce useful monitoring knowledge databases for systems 
lacking an extensive archive of actual performance data. In 
addition, the use of simulated data allows IMS to include 
information about previously unexplored system operating 
regimes in the monitoring knowledge base by simulating 
such regimes before an actual system run. 

Example 3 

IMS was trained with simulated data as in Example 2. All 
IMS training data that was used to construct the system 
monitoring knowledge base was derived from nominal 
simulations. Simulated test data was then generated includ- 
ing a system failure. In particular, a failure was injected near 
the end of the simulation that caused the shut-off valve 
POV-4 to stick open at 20 degrees instead of fully closing. 
When the data from the failure simulation was processed by 
IMS, the off-nominal system performance was detected 
within two data frames (0.2 simulated seconds) of the 
occurrence of the failure. Although IMS in the embodiment 
employed here did not identify the shut-off valve as the 
cause of the off-nominal behavior, rapid detection of an 
anomaly was achieved. 

Example 4 

The IMS monitoring technique of these examples was not 
optimized for speed, although initial timing tests appear to 
be promising. A linear search was used to match input data 
with the classes of the monitoring knowledge base formed 
from the 1,200 simulated training data sets of Example 2. 
Data records were read sequentially from a disk file. Run- 
ning on a Sun Microsystems Blade 1000 workstation with a 
750 MHz processor, IMS achieved a processing speed of 
approximately 2,000 data records per second. A Sun Ultra 10 
with a 300 MHz processor was able to process approxi- 
mately 700 records per second. It is expected that IMS 
would be able to process at kilohertz data rates if the data 
acquisition interface were able to transfer data sufficiently 
rapidly. 

Although the above application of IMS to the HCF used 
three training data subsets and three training phases, other 
embodiments of IMS can also be employed. For example, 
some embodiments of IMS combine these three training 
steps into one pass through all training data, and do not use 
a division of training data into subsets. While it is expected 
that such embodiments of IMS will give similar system 
monitoring accuracy, some embodiments may be advanta- 
geous in terms of computational simplicity andor training 
and monitoring speed. 

Example 5 

IMS is currently performing real-time system health 
monitoring for a UH-60 Blackhawk research helicopter at 
the NASA Ames Research Center. The two turbine engines 
on the helicopter are monitored by means of a separate IMS 
cluster database for each engine. Data is collected at a rate 

22 
of 4 Hz and transmitted over a MIL-STD-1553 Data Bus to 
the IMS computer on board the helicopter. The IMS data 
vectors include three time samples where each sample 
includes sensor values for: 1) Engine torque. 2) Stage-1 

5 compressor speed. 3) Stage-2 compressor speed. 4) Fuel 
flow. 5) Rotor speed. Thus, five sensor values at three 
consecutive time samples result in 15 data values in each 
IMS vector. 

IMS was trained with data collected on ten helicopter 
flights and two cluster databases were formed for system 
monitoring, one for each engine. During system monitoring, 
the data from each engine is evaluated by IMS by means of 
the corresponding engine-specific cluster database in real- 

15 time as collected. The data is displayed on a video display 
on board the helicopter as well as stored for later analysis. 
To date, no actual in-service system anomalies have 
occurred. However, IMS was tested by means of a simulated 
system anomaly. Specifically, the fuel flow values were 

20 increased by 10% to 15% in one engine for a period of time. 
IMS detected this anomaly and displayed a significant 
“deviation from normal” value on the display. 

Although various embodiments which incorporate the 
teachings of the present invention have been shown and 

25 described in detail herein, those skilled in the art can readily 
devise many other varied embodiments that still incorporate 
these teachings. 

APPENDIX 
30 

It is desired to show that any cluster in the database that 
is closer to the vector V than cluster Cc must include points 
that are a distance between (Dv+Cv) and MAX{O, (Dv- 
Cv)} away from the indexing reference point. Herein we 

35 assume (Dv-Cv)ZO. The case in which (Dv-Cv)<O and is 
replaced by 0 proceeds by the same arguments. 

Recalling that Cv is the distance between the input vector 
V and cluster Cc, consider the region of (N dimensional) 

4o space containing the point defined by vector V and all points 
that are a distance from 0 to Cv away from V. We call this 
a “ball” around point V, B,. Recalling that Dv is the distance 
of point V from the indexing reference point, B, contains a 
point closest to the indexing reference point and a distance 

45 (Dv-Cv) or less from the indexing reference point. B, also 
contains a point farthest from the indexing reference point at 
a distance (Dv+Cv) from the indexing reference point. B, 
may or may not contain the indexing reference point. 

If Bv does not contain the indexing reference point, 
50 consider all points in space having a distance between 

(Dv-Cv) and (Dv+Cv) from the indexing reference point. 
We call this shell around the indexing reference point S,. S, 
contains all of the points of B,. Any point outside of S, lies 
at a distance less than Dv-Cv, or greater than Dv+Cv, from 

55 the indexing reference point. Also, since S, contains all of 
B,, no point outside of S, will be in B, and, therefore, no 
point outside of S, will be closer to V than Cc. This means 
that any point less than a distance Dv-Cv or greater than 
Dv+Cv from the indexing reference point will be further 

If B, contains the indexing reference point (that is, V is 
closer to the indexing reference point than it is to Cc), S, 
becomes a sphere around the indexing reference point with 
radius Dv+Cv as the inner radius of the S, shell collapses to 

65 zero. All points lying outside this sphere S, also lie outside 
the sphere B, so only points less than a distance Dv+Cv from 
the indexing reference point can be closer to V than Cc. 

60 from V than Cc. 
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What is claimed is: 
1. A method of inductive learning comprising providing a 

to provide or receive training data, including at least one 

cluster, and to display in a visually perceptible format 
at least one deviation distance for the parameter values 
for the at least one monitored-system vector from the 
corresponding parameter values for the nearest cluster. 

7. The method of claim 6, wherein said computer is 

to provide an additional database of clusters, associated 
with respective ranges of values for at least a subset of 
said set of parameters, the additional cluster database 
being annotated with diagnostic information; and 

when at least one of said monitored-system vectors is not 
included in any cluster, to compare at least one of said 
monitored-system vectors with at least one of the 
clusters of the additional cluster database. 

8, ~n apparatus for inductive learning comprising a 

to provide or receive training data, including at least one 
of archived data, simulated nominal data and off- 

computer that is programmed: 

of archived data, simulated nominal data and off- 5 
nominal data; further programmed 

to provide vectors having a set of parameters determined 
from the training data; 

to generate a cluster database comprising clusters that are 
associated with respective ranges of values for at least 10 
a subset of the set of parameters; 

to index the clusters of the cluster database based on an 
indexing distance of each of the clusters from a pre- 
determined indexing reference point; 

to organize the clusters into a data structure of clusters 15 
based on the cluster indexing; and 

to display a relationship between at least one of the 
vectors and the data structure in a visually perceptible 
format. nominal data; 

2. The method of claim 1 wherein said process of gener- 20 

computer that is programmed: 

to provide at least one vector having a set of 
ating comprises: based on said training data; and 

ciated with selected ranges of values for at least a 
subset of the set of parameters; 

to index the clusters of the cluster database based on an 
indexing distance of each of the clusters from a pre- 
determined indexing reference point; 

to organize the clusters into a data structure of clusters 
based on the cluster indexing; and 

to display a relationship between at least one of the 
vectors and the data structure in a visually perceptible 
format. 

9. The apparatus of claim 8, wherein said process of 
35 generating comprises: 

determining a separation distance between a selected test to generate a cluster database comprising clusters asso- 
vector and one of said clusters, and 

the separation distance exceeds a 
producing a new cluster including the test vector, when 

3. The method of claim 2, wherein said computer is 
further programmed to determine a deviation distance by 
dividing said separation distance between said test vector 
and said one of said clusters by a value representing a range 
of values of at least one variable in said one of said clusters, 30 
and to associate the deviation distance with a severity of a 
deviation of the at least one monitored-system vector from 
a nearest cluster. 

4. The method of claim 1 wherein said process of gener- 
ating comprises: 

25 

determining a separation distance between a selected test 

expanding the at least one cluster to include the test vector 

determining a separation distance between a test vector 

producing a new if the separation distance exceeds 
and one of said clusters, and 

a threshold value. 

vector and at least one of said clusters, and 

when the separation distance is less than or equal to a 
threshold value. 10. The apparatus of claim 9, wherein said computer is 

5, The method of claim 4, wherein said computer is further programmed to determine a deviation distance by 
further programmed to determine a deviation distance by dividing said separation distance between said test vector 
dividing said separation distance between said test vector and said one or said clusters by a value representing a range 
and said one or said clusters by a value representing a range of values of at least one variable in said one of said clusters, 
of values of at least one variable in said at least one of said 45 and to associate the deviation distance with a severity of a 
clusters, and to associate the deviation distance with a deviation of the at least one monitored-system vector from 
severity of a deviation of the at least one monitored-system a nearest 
vector from a nearest cluster. 11. The apparatus of claim 8 wherein said process of 

6. A method of monitoring a system comprising providing generating 
a computer that is programmed: determining a separation distance between a test vector 

to provide or receive a cluster database comprising clus- and at least one of said clusters, and 
ters that are associated with respective ranges of values expanding the at least one of said clusters to include the 
for at least a subset of a set of cluster parameters; test vector when the separation distance is less than or 

to receive at least one monitored-system vector having equal to a threshold value. 
monitored-system parameters, with parameter values 55 12. The apparatus of claim 11, wherein said computer is 
generated by sensors that provide data measured on a further programmed to determine a deviation distance by 
monitored system; dividing said separation distance between said test vector 

to determine whether the at least one monitored-system and said one or said clusters by a value representing a range 
vector is contained in any of the clusters based on at of values of at least one variable in the at least one of said 
least a subset of the monitored-system parameters and 60 clusters, and to associate the deviation distance with a 
the subset of the cluster parameters; and severity of a deviation of the at least one monitored-system 

when at least one of the monitored-system vectors is not vector from a nearest cluster. 
contained in any cluster, to determine a deviation 13. An apparatus for monitoring a system, comprising a 
distance of the at least one monitored-system vector computer, having a memory storing a cluster database 
from a nearest cluster, to associate the determined 65 comprising clusters, associated with respective ranges of 
deviation distance with a severity of a deviation of the values for at least a subset of a set of cluster parameters, 
at least one monitored-system vector from the nearest where the computer is programmed 

4o 

50 
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to provide or receive one or more monitored-system 
vectors having monitored-system parameter, with 
parameter values generated by sensors that provide data 
measured on a monitored system; 

to determine whether the monitored-system vector is 
contained in any of the clusters based on at least a 
subset of the monitored-system parameters and the at 
least a subset of cluster parameters; and 

when at least one of the monitored-system vectors is not 
contained in any cluster, to determine a deviation 
distance of the at least one monitored-system vector 
from a nearest cluster, to associate the determined 
deviation distance with a severity of a deviation of the 
at least one monitored-system vector from the nearest 
cluster, and to display in a visually perceptible format 
at least one deviation distance for a parameter value for 

26 
the at least one monitored-system vector from a corre- 
sponding parameter value for the nearest cluster. 

14. The apparatus of claim 13, wherein said computer is 

to provide an additional database of clusters that are 
associated with respective ranges of values for at least 
a subset of said parameters, the additional cluster 
database being annotated with diagnostic information; 

when at least one of said monitored-system vectors is not 
included in any of said clusters, to compare said at least 
one of said monitored-system vectors with the clusters 
of the additional cluster database. 

further programmed; 
5 

10 and 

15 
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